If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+7-12=5X
We move all terms to the left:
X^2+7-12-(5X)=0
We add all the numbers together, and all the variables
X^2-5X-5=0
a = 1; b = -5; c = -5;
Δ = b2-4ac
Δ = -52-4·1·(-5)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{5}}{2*1}=\frac{5-3\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{5}}{2*1}=\frac{5+3\sqrt{5}}{2} $
| 12x2-16x+1=0 | | (-3)=-2x-4 | | 9-(-)k=15 | | 3(x+2)=2x+5x+2+10 | | F(x)=500(1-0.19)x/2 | | y4=14641 | | -2=-2g+-18 | | 7x^2+5x+4=6x^2+2x+39 | | 1.5(m+7)=42 | | X^2+4(x-2)=4 | | 7x^2+5x+4+6x^2+2x+39=180 | | 1,9x+3=1,3x. | | 60y+2750-50y=1.5×80y | | 60x+2750-50x=1.5×80x | | 30x+136=180 | | 30x+136=0 | | 60=y/0.5 | | 4(a+1)+2(a-1)=23 | | 16x+61+10x+51+4x+24=180 | | (4y+5)°=(3y+63)° | | y/4=3.05 | | x^2-7x+72+10x+46+3x+7=180 | | m2+8m−43=0 | | 11x=11.5 | | 20=0.2h | | -5/6x-1/8x=102 | | 2(x-8)-4x=10x+4 | | 4c=216 | | x(1+0.05)=252 | | 2.5x+24=-7 | | 2x2–9=-6 | | 10^u=100,000 |